

Rami Moussa Mechanical Option Advisor: Professor Treado

Senior Thesis Final Presentation

Peirce Hall, Kenyon College Gambier, Ohio 4/11/11

Introduction

- -Project and Facility Background Information
- -Intention of Study
- -Key Preliminary Research Findings

Studies:

-Depth: Combined Heat and Power (CHP) Study -CHP Concepts -Model Results & Analysis -Breadth No.1: Acoustic Study

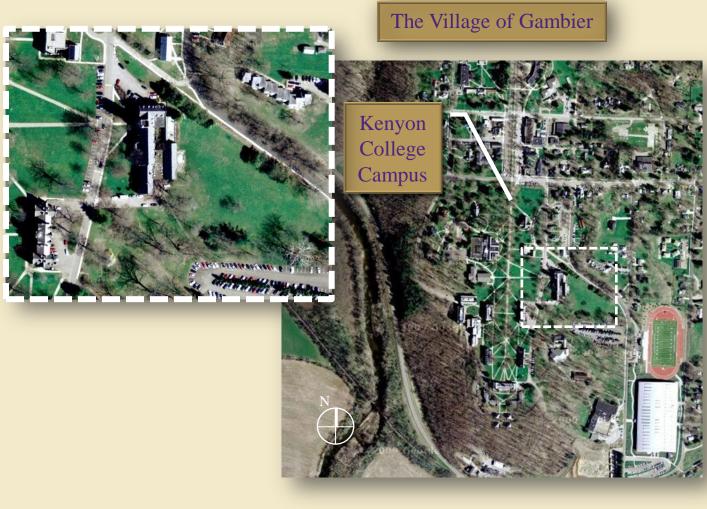
Conclusion

-Effectiveness Assessment of Systems

Acknowledgements

Questions

Kenyon College The Village of Gambier Peirce Hall history


Introduction

Project Information

Intention of Studies LEED certification

Benefits

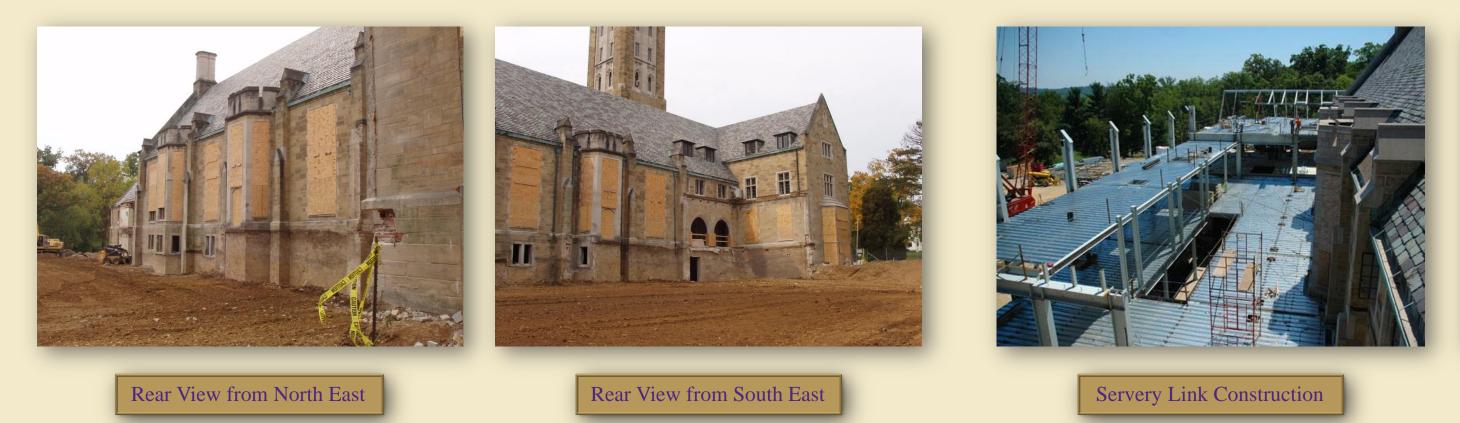
Reduced energy use Qualify for incentives Grants

I. Introduction

- II. Background Information
- ► 1) Project Information
- 2) System Information
- III. Combined Heat and Power
 - 1) CHP Concepts
 - 2) Selected Prime Mover
 - 3) Control Scenarios
 - 4) Summary of Results
- IV. Acoustic Study
 - 1) Acoustic Considerations
 - 2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

Kenyon College

Size: 66,640 SF


Occupancy types: A-2 (restaurant) and A-3 (assembly)

Dates of Construction: Spring 2006 - Spring 2008

Total Cost: \$18 Million

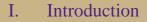
Project Team:
Owner - Kenyon College
Architect - Gund Partnership
Structural Engineer - LeMessurier Consultants, Inc.
Construction Management - The Albert M. Higley Co.
MEP and FP Engineers - Syska Hennessy Group, Inc.

Project Delivery: Design-Bid-Build

Introduction

Project Information

System Information


Peirce Hall, Kenyon College Gambier, Ohio Rami Moussa | Mechanical Option

New Servery Link

- II. Background Information
 - 1) Project Information
- >2) System Information
- III. Combined Heat and Power
 - 1) CHP Concepts
 - 2) Selected Prime Mover
 - 3) Control Scenarios
 - 4) Summary of Results
- IV. Acoustic Study
 - 1) Acoustic Considerations
 - 2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

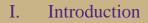
<u>Heating</u>

-Kenyon College natural gas fueled campus steam distribution
-Steam system (26 PSI)
-Hot water system (190°F)

Power

-Purchased from American Electric Power Company

Project Information


System Information

CHP Concents

LEED Credit Assessment			
Section	Points Acquired		
Sustainable Sites	9/29		
Water Efficiency	4/10		
Energy and Atmosphere	5/35		
Materials and Resources	2/14		
Indoor Environmental Quality	6/15		
Innovation Design	1/6		
Regional Priority	0/4		
Total	27/80		

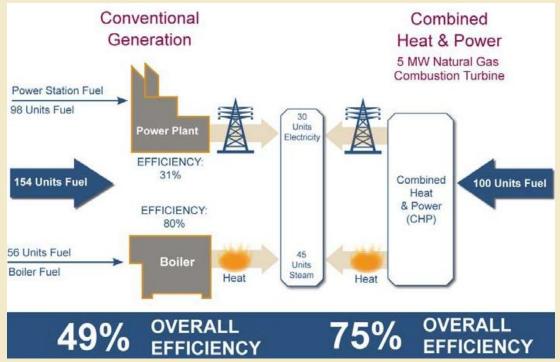
- II. Background Information
 - 1) Project Information
 - 2) System Information
- III. Combined Heat and Power
- >1) CHP Concepts
- 2) Selected Prime Mover
- 3) Control Scenarios
- 4) Summary of Results
- IV. Acoustic Study
 - 1) Acoustic Considerations
 - 2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

Basic CHP Concept

-Burn fuel to generate electricity. Recover and distribute a fraction of the exhausted heat from heat engine.

Benefits

- -Highly efficient process \rightarrow lower utility cost -Distributed generation -Multiple uses for recovered heat
- -Decreased exhaust emissions


Disadvantages

-Complex operation and maintenance -Careful application design considerations

Boiler Fuel

System Information

CHP Concepts Selected Prime Mover

-			

I. Introduction

- II. Background Information
 - 1) Project Information
 - 2) System Information
- III. Combined Heat and Power
- ► 1) CHP Concepts
- 2) Selected Prime Mover
- 3) Control Scenarios
- 4) Summary of Results
- IV. Acoustic Study
 - 1) Acoustic Considerations
 - 2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

Basic CHP Concept

-Burn fuel to generate electricity. Recover and distribute a fraction of the exhausted heat from heat engine.

Benefits

- -Highly efficient process \rightarrow lower utility cost -Distributed generation
- -Multiple uses for recovered heat
- -Decreased exhaust emissions

Disadvantages

-Complex operation and maintenance -Careful application design considerations

Spark Gap Ca				
Cost per Mil	lion Bt			
Power	Fuel			
\$36	\$10			


Components

-Heat engine (prime mover)-Generator-Heat exchanger-System interconnections

System Information

CHP Concepts Selected Prime Mover

Peirce Hall, Kenyon College Gambier, Ohio Rami Moussa | Mechanical Option

Siemens' W501FD Test Facility in Berlin, Germany

Capstone C30 Microturbine

I. Introduction

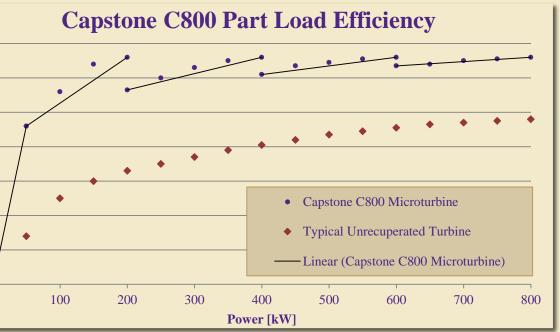
- II. Background Information
 - 1) Project Information
 - 2) System Information
- III. Combined Heat and Power
 - 1) CHP Concepts
 - 2) Selected Prime Mover
 - 3) Control Scenarios
 - 4) Summary of Results
- IV. Acoustic Study
 - 1) Acoustic Considerations
 - 2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

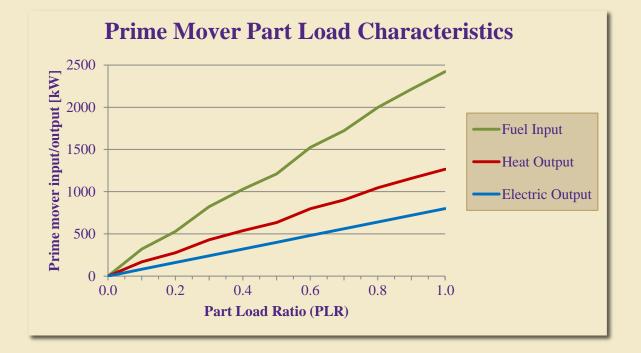
Microturbine

Capstone C800 High-Pressure Natural Gas 800 kW Power Package

Benefits: -Efficiency -Emissions -Capacity

Prime Mover Statistics:


-800 kW power output -5,400 Btu/h heat output per kW generated



CHP Concepts Selected Prime Mover

Control Scenarios

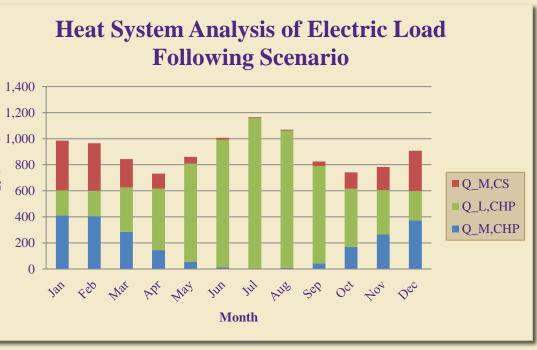
I. Introduction

- II. Background Information
 - 1) Project Information
 - 2) System Information
- III. Combined Heat and Power
 - 1) CHP Concepts
 - 2) Selected Prime Mover
 - > 3) Control Scenarios
 - 4) Summary of Results
- IV. Acoustic Study
 - 1) Acoustic Considerations
 - 2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

CHP Model

- -Calculate demand load
- -Apply desired control scenario
- -Calculate prime mover output
- -Analyze amount of demand met and amount of additional energy needed or wasted

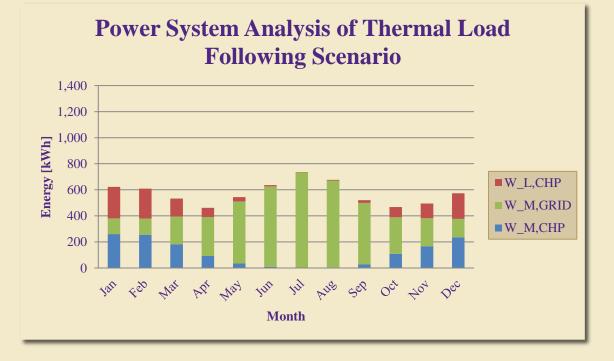
Legend for the Following Tables:


- Q_M,CS: Heating Demand Load Met By Campus Steam System Q_L,CHP: Unused Heat Generated by CHP Prime Mover Q_M,CHP: Heating Demand Load Met By CHP System
- W_L,CHP: Unused Electricity Generated by CHP Prime Mover W_M,GRID: Electrical Demand met by Grid W_M,CHP: Electrical Demand Load Met By CHP System

Electric Load Following

<u>Selected Prime Mover</u>

Control Scenarios Regulte Xr Analycie


-100% of power demand met by CHP system -Large amount of heat wasted during summer months

Peirce Hall, Kenyon College Gambier. Ohio Rami Moussa | Mechanical Option

Thermal Load Following

-100% heating demand met by CHP system -System becomes inactive in summer months -Large amount of power required from grid

I. Introduction

- II. Background Information
 - 1) Project Information
 - 2) System Information
- III. Combined Heat and Power
 - 1) CHP Concepts
 - 2) Selected Prime Mover
 - 3) Control Scenarios
- ► 4) Summary of Results
- IV. Acoustic Study
 - 1) Acoustic Considerations
 - 2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

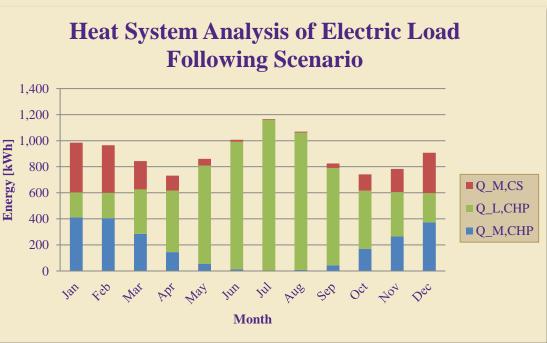
Summary of Results

- -Electric load following design is most effective: -Independence from grid provider
- -Efficiency equal to grid provider
- -Wasted energy can potentially be utilized

Legend for the Following Tables:

Q_M,CS: Heating Demand Load Met By Campus Steam System Q_L,CHP: Unused Heat Generated by CHP Prime Mover Q_M,CHP: Heating Demand Load Met By CHP System

W_L,CHP: Unused Electricity Generated by CHP Prime Mover W_M,GRID: Electrical Demand met by Grid W_M,CHP: Electrical Demand Load Met By CHP System

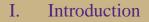

Room for Improvement

-Absorption cooling -Expanded system

Control Scenarios

Results & Analysis

A coulette (Considerations



Annual Cost Comparison by Operation Scenario						
System	Fuel	Δ from SHP	Power	Δ from SHP	Total	∆ from SHP
SHP	\$99,000		\$416,000		\$515,000	
CHP (Electric)	\$468,000	373%	\$0	-100%	\$468,000	-9%
CHP (Thermal)	\$190,000	92%	\$378,000	-9%	\$568,000	10%

EPA Annual Emissions Analysis (SHP Comparison)	CHP System	Displaced Electricity Production	Displaced Thermal Production	Emissions/Fuel Reduction	Percent Reduction
NOx (tons/year)	0.77	9.34	1.29	9.86	93%
SO2 (tons/year)	0.01	28.15	0.01	28.14	100%
CO2 (tons/year)	2,530	3,942	1,500	2,913	54%
Carbon (metric tons/year)	625	975	371	720	54%
Fuel Consumption (MBtu/year)	43,352	38,426	25,714	20,788	32%
Number of Cars Removed				481	

- II. Background Information
 - 1) Project Information
 - 2) System Information
- III. Combined Heat and Power
 - 1) CHP Concepts
 - 2) Selected Prime Mover
 - 3) Control Scenarios
 - 4) Summary of Results
- IV. Acoustic Study
- 1) Acoustic Considerations2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

Location Considerations

- -Size
- -Proximity to steam and power building entrances -Sightlines to inner campus and surrounding areas

Acoustic Characteristics

-Single unit sound pressure level (SPL) is 65 dBA at 10 m-Known part load high pitch noise-Reduced SPL at Pierce Hall exterior wall below 50 dBA



Results & Analysis Acoustic Considerations

Acoustic Treatment

Peirce Hall, Kenyon College Gambier, Ohio Rami Moussa | Mechanical Option

Peirce Hall Site with Possible Prime Mover Location

Google Map of Peirce Hall Site

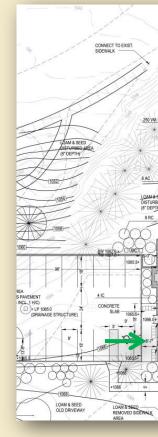
I. Introduction

- II. Background Information
 - 1) Project Information
 - 2) System Information

III. Combined Heat and Power

- 1) CHP Concepts
- 2) Selected Prime Mover
- 3) Control Scenarios
- 4) Summary of Results

IV. Acoustic Study

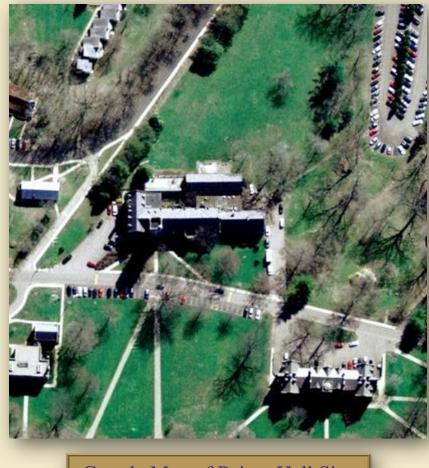

- 1) Acoustic Considerations
- >2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

Acoustic Characteristics

-Construct a "sealed" housing structure for the prime movers
-Three CMU wall constructions explored:

Standard 8" x 8" x 16" CMU [STC – 45]
(1) with center grout and steel reinforcement [STC – 48]
(2) with 2 coats oil based paint on each side [STC – 55]


Sound Pressure Level at Peirce Hall from 20 ft				
Туре	STC	SPL (dBA)		
1	45	33		
2	48	30		
3	55	23		


Acoustic Considerations

Acoustic Treatment

Peirce Hall, Kenyon College Gambier, Ohio Rami Moussa | Mechanical Option

Peirce Hall Site with Prime Mover Location

Google Map of Peirce Hall Site

Meeting Intentions of Studies

-Recognizably efficient building systems -Fuel savings provide improvement needed -LEED prerequisites

- I. Introduction
- II. Background Information
 - 1) Project Information
 - 2) System Information
- III. Combined Heat and Power
 - 1) CHP Concepts
 - 2) Selected Prime Mover
 - 3) Control Scenarios
 - 4) Summary of Results
- IV. Acoustic Study
 - 1) Acoustic Considerations
 - 2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

Lighting Modification

Conclusion

Acknowledgements

LEED Credit Assessment				
Section	Points Acquired			
Sustainable Sites	9/29			
Water Efficiency	4/10			
Energy and Atmosphere	5(+13)/35			
Materials and Resources	2/14			
Indoor Environmental Quality	6/15			
Innovation Design	1/6			
Regional Priority	0/4			
Total	40/80			

- I. Introduction
- II. Background Information
 - 1) Project Information
 - 2) System Information
- III. Combined Heat and Power
 - 1) CHP Concepts
 - 2) Selected Prime Mover
 - 3) Control Scenarios
 - 4) Summary of Results
- IV. Acoustic Study
 - 1) Acoustic Considerations
 - 2) Acoustic Treatment
- V. Conclusion
- VI. Acknowledgements

Sponsors: Kenyon College Syska Hennessy Group, Inc.

Kenyon College Contacts: Mr. Mark Kohlman Mr. Everett Neal

Syska Hennessy Group, Inc. Contacts: Mr. William Caretsky Mr. John Leeds

Professor Stephen Treado **Professor James Freihaut** Professor William Bahnfleth Professor Bob Holland Professor Kevin Parfitt

Conclusion

Acknowledgements Ouestions

Peirce Hall, Kenyon College Gambier, Ohio Rami Moussa | Mechanical Option

Pennsylvania State University Architectural Engineering department:

Acknowledgements Questions

Peirce Hall, Kenyon College Gambier, Ohio Rami Moussa | Mechanical Option

Questions?

